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Abstract

I develop and estimate a structural equilibrium model of the college market. Stu-

dents, having heterogeneous abilities and preferences, make college application deci-

sions, subject to uncertainty and application costs. Colleges, observing only noisy

measures of student ability, choose tuition and admissions policies to compete for more

able students. Tuition, applications, admissions and enrollment are joint outcomes

from a subgame perfect Nash equilibrium. I estimate the structural parameters of the

model using data from the NLSY97, via a three-step procedure to deal with potential

multiple equilibria. Counterfactual experiments show that �rst, a perfect measure of

student ability would lead to higher enrollee ability and higher average student welfare.

Second, funding cuts to public colleges would lead to tuition increases in all colleges

and large student welfare loss. Finally, college enrollment would increase by only 2.1%

if the lower-ranked public colleges were expanded to accommodate all who applied.
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1 Introduction

Both the level of college enrollment and the composition of college student bodies continue

to be issues of widespread scholarly interest as well as the source of much public policy

debate. In this paper, I develop and structurally estimate an equilibrium model of the college

market. It provides insights into the determination of the population of college enrollees and

permits quantitative evaluation of the e¤ects of counterfactual changes in the features of the

college market. The model interprets the allocation of students in the college market as an

equilibrium outcome of a decentralized matching problem involving the entire population of

colleges and potential applicants.1 As a result, counterfactuals that directly involve only a

subset of the college or student population can produce equilibrium e¤ects for all market

participants. My paper thus provides a mechanism for assessing the market equilibrium

consequences of changes in government policies on higher education.

While the idea of modeling college matching as a market equilibrium problem is not new,

this paper makes advances relative to the current literature by simultaneously modeling

three aspects of the college market that are plausibly regarded as empirically important

and incorporating them into the empirical analysis.2 ;3 The three aspects are: 1) Application

is costly to the student. In addition to application fees, a student has to spend time and

e¤ort gathering information and preparing application materials and may incur psychic costs

during the process. 2) Students di¤er in their abilities and preferences for colleges.4 3)

Colleges can only observe noisy measures of student ability, and both sides of the market

face uncertainties. For the student, admissions are uncertain, which, together with the cost

of application, leads to a non-trivial portfolio problem for her: how many and which, if

any, colleges to apply to? For the college, the yield of each admission and the quality of a

potential enrollee are both uncertain. The inference of these has to account for students�

strategies. Colleges�policies are also interdependent because students�application portfolios

and their enrollment depend on the policies of all colleges.

I model three stages of the market. First, colleges simultaneously announce their tuition.

Second, students make application decisions and colleges simultaneously choose their ad-

missions policies. Third, students make their enrollment decisions. My model incorporates

tuition, applications, admissions and enrollment as joint outcomes from a subgame perfect

Nash equilibrium (SPNE). SPNE in this model need not be unique. Multiplicity may arise

1In this paper, colleges refer to four-year colleges; students (potential applicants) refer to high school
graduates.

2The basic framework of my model builds on the theoretical contribution of Chade, Lewis and Smith
(2009).

3The empirical signi�cance of these factors will be assessed in my exercise.
4Throughout the paper, student ability refers to her readiness for college.
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from two sources: 1) multiple common self-ful�lling expectations held by the student about

admissions policies, and 2) the strategic interplay among colleges.5

To estimate the model with potentially multiple equilibria, I extend the estimation strat-

egy of Moro (2003) and estimate the model in three steps.6 The �rst two steps recover

all the structural parameters involved in the application-admission subgame without having

to impose any equilibrium selection rule. In particular, each application-admission equilib-

rium can be uniquely summarized in the set of probabilities of admission to each college

for di¤erent types of students. The �rst step, using simulated maximum likelihood, treats

these probabilities as parameters and estimates them along with fundamental student-side

parameters in the student decision model, thereby identifying the equilibrium that generated

the data. The second step, based on a simulated minimum distance estimation procedure,

recovers the college-side parameters by imposing each college�s optimal admissions policy.

Step three recovers the remaining parameters by matching colleges�optimal tuition with the

data tuition.

To implement the empirical analysis, I use data from the National Longitudinal Sur-

vey of Youth 1997 (NLSY97), which provides detailed information on student applications,

admissions, �nancial aid and enrollment. Tuition information comes from the Integrated

Postsecondary Education Data System.

Some of my major �ndings are: �rst, students not only attach di¤erent values to the

same college, but also rank colleges di¤erently. Second, students face non-trivial application

costs that cannot be accounted for simply by application fees. Third, a college�s admissions

rate, or selectivity, does not necessarily re�ect its quality, as measured by the composition of

its student body. Among other factors, it strongly depends on the severity of informational

frictions and the capacity of the college.7

I use the estimated model to conduct three counterfactual experiments. First, I consider

the degree to which the market is a¤ected by incomplete information. With a perfect measure

of student ability, average student welfare would increase by $2500, or 6%. All colleges

obtain higher-ability students, although their admissions rates increase to almost 100%.

This highlights the fact that the selectivity of a college need not re�ect its quality in terms

5Models with multiple equilibria do not have a unique reduced form and this indeterminacy poses practical
estimation problems. In direct maximum likelihood estimation of such models, one should maximize the
likelihood not only with respect to the structural parameters but also with respect to the types of equilibria
that may have generated the data. The latter is a very complicated task and can make the estimation
infeasible.

6Moro (2003) estimates a statistical discrimination model in which only one side of the market is strategic.
I show how the extended strategy can be used to estimate a model in which both sides of the market are
strategic, and hence, the second source of multiple equilibria arises.

7In this paper, the capacity of a college refers to the fraction of students it can accommodate.
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of enrollee ability.

In the second experiment, I examine the equilibrium impacts of a funding cut to public

colleges. All colleges - public and private - increase their tuition. Although the government

saves on educational expenses, the loss in student welfare is three times as large as government

savings.

In the third experiment, I investigate the extent to which the government can expand

college access by increasing the supply of lower-ranked public colleges. At most 2:1% more

students can be drawn into colleges, although the enlarged colleges adopt an open admissions

policy and lower their tuition to almost zero. Therefore, neither tuition cost nor the number

of available slots is a major obstacle to college access. A large group of students, mainly

low-ability students, prefer the outside option over any of the college options.

Although this paper is the �rst to estimate a market equilibrium model that incorpo-

rates tuition setting, applications, admissions and enrollment, it builds on various studies

on similar topics. For example, Manski and Wise (1983) use nonstructural approaches to

study various stages of the college admissions problem separately in a partial equilibrium

framework. Most relevant to this paper, they �nd that applicants do not necessarily prefer

the highest quality school.8 Arcidiacono (2005) develops and estimates a structural model

to address the e¤ects of college admissions and �nancial aid rules on future earnings. In a

dynamic framework, he models student�s application, enrollment and choice of college major

and links education decisions to future earnings.

While an extensive empirical literature focuses on student decisions, little work has stud-

ied the college market in an equilibrium framework. One exception is Epple, Romano and

Sieg (2006). In their paper, students di¤er in family income and ability (perfectly measured

by SAT ) and make a single enrollment decision.9 Given its endowment and gross tuition,

each college chooses its �nancial aid and admissions policies to maximize the quality of

education provided to its students. Their model provides an equilibrium characterization

of colleges�pricing strategies, where colleges with higher endowments enjoy greater mar-

ket power and provide higher-quality education. With complete information, no uncertainty

and no unobserved heterogeneity, their model predicts that students with the same SAT and

family income would have the same admission, �nancial aid and enrollment outcomes. To

accommodate data variations, the authors assume measurement errors in SAT and family

income, which are found to be large.10

8Some examples of papers that focus on the role of race in college admissions include Bowen and Bok
(1998), Kane (1998) and Light and Strayer (2002).

9In their paper, the application decision is not modeled. It is implicitly assumed that either application
is not necessary for admission, or all students apply to all colleges. Accordingly, their empirical analysis is
based on a sample of �rst-year college students.
10The authors note that "the model may not capture some important aspects of admission and pricing."
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This paper departs from Epple, Romano and Sieg (2006) in several respects: 1) College

application is a non-trivial problem for the student, as is manifested by the popularity of

various application guide programs. Student application decisions also di¤er substantially.

For example, over 50% of high school graduates do not apply to college. However, the college

market includes not only those who do apply, but all potential college applicants. To evaluate

the e¤ects of alternative education policies, it is necessary to understand the application

decisions (including non application) made by all students and how these decisions interact

with colleges�decisions. This is one focus of my paper. 2) Students di¤er in their abilities

and preferences for colleges, which are unobservable to the econometrician. Accordingly,

I allow for such unobserved heterogeneity in my model, which also helps to accommodate

data variations. 3) The college market is subject to information friction: colleges can only

observe noisy measures of student ability, and they do not observe student preferences.

Therefore, I incorporate incomplete information and uncertainty into my model. As the �rst

two structural papers that study college market equilibrium, Epple, Romano and Sieg (2006)

and this paper complement one another: the former provides a more comprehensive view

on colleges�pricing strategy, while the latter endogenizes student application as part of the

equilibrium in a frictional market.

Theoretically, I build on the work by Chade, Lewis and Smith (2009), who model the

decentralized matching of students and two colleges. Students, with heterogeneous abilities,

make application decisions subject to application costs and noisy evaluations. Colleges com-

pete for better students by setting admissions standards for student signals.11 I extend their

framework in the following ways: On the student side, �rst, students are heterogeneous in

their preferences for colleges as well as in their abilities, both of which are unknown to the

colleges. Second, I allow for two noisy measures of student ability. One measure, as the

signal in Chade, Lewis and Smith (2009), is subjective and its assessment is known only to

the college. The other measure is the objective SAT score, which is known both to the stu-

dent and to the colleges she applies to, and may be used strategically by the student in her

applications.12 Third, in addition to the admission uncertainty caused by noisy evaluations,

students are subject to post-application shocks. These shocks incorporate new information

for the student before she makes her enrollment decision. For example, the amount of �-

nancial aid she can obtain is not known with certainty upon application. Moreover, during

(page 911)
11Nagypál (2004) analyzes a model in which colleges know student types, but students themselves can

only learn their type through normally distributed signals.
12For example, a low-ability student with a high SAT score may apply to top colleges to which she would

not otherwise apply; a high-ability student with a low SAT score may apply less aggressively than she would
otherwise.
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the months between application and enrollment, a student may learn more about the col-

leges and she may also experience unexpected family and/or job prospects.13 Empirically,

these shocks are necessary to explain "seemingly sub-optimal" behaviors such as an applicant

choosing not to attend any college even if admitted. On the college side, I model multiple

colleges, who compete against each other via tuition as well as admissions policies.14

The rest of the paper is organized as follows: Section 2 lays out the model. Section 3

explains the estimation strategy, followed by a brief discussion of identi�cation. Section 4

describes the data. Section 5 presents empirical results, including parameter estimates and

model �t. Section 6 describes the counterfactual experiments. The last section concludes

the paper. The online appendix contains some details and additional tables.

2 Model

In this section, I will present the model. A discussion about some modeling choices is

provided at the end of this section.

2.1 Primitives

2.1.1 Players

There are J colleges, indexed by j = 1; 2; :::J . In the following, J will also denote the set

of colleges. A college�s payo¤ depends on the total expected ability of its enrollees and its

tuition revenue. To maximize its payo¤, each college has the latitude to choose its tuition and

admissions policies, subject to its �xed capacity constraint �j, where �j > 0 and
X
j2J

�j < 1.

There is a continuum of students, making college application and enrollment decisions.

Students di¤er in SAT scores and family backgrounds, and they are of di¤erent types. In

addition, each student also has her own idiosyncratic (permanent) tastes for colleges. SAT

scores (SAT 2 f1; 2; :::SATg) and family backgrounds (B) are jointly distributed according
toH(SAT;B):15 A student type T is de�ned as T � (A;Z) 2 f1; 2; :::; Ag�f1; 2; :::; Zg, with
A denoting ability, and Z representing the non-ability dimension.16 Type T is correlated

with (SAT;B) and distributed according to P (T jSAT;B) = �(AjSAT;B)P (ZjA), where
13For enrollment in the fall semester starting from September, the typical application deadline is in January.
14As a price of these extensions, it is infeasible to obtain an analytical or graphical characterization of the

equilibrium as in Chade, Lewis and Smith (2009).
15The distribution of H (SAT;B) is nonparametric and comes directly from the data.
16For example, some students prefer big universities while some prefer small colleges. Type Z captures

heterogeneity along these lines.
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�(AjSAT;B) is an ordered logistic distribution and P (ZjA) is non-parametric.17 Student�s
idiosyncratic (permanent) tastes for colleges are captured by a J-dimensional random vector

�. � is i.i.d. N(0;
�), where 
� is a diagonal matrix with �2�j denoting the variance of �j:

2.1.2 Application Cost

Applications are costly to the student. The cost of application is a function of the number

of applications sent, regardless of where they are sent. The cost function, denoted as C(�),
satis�es the following: C : f1; :::; Jg ! R++, with C(n + 1) � C(n). I treat C(�) non-
parametrically.

2.1.3 Financial Aid

A student may obtain �nancial aid that helps to fund her attendance in any college, and she

may also obtain college-speci�c �nancial aid. The amounts of various �nancial aid depend

on the student�s family background and SAT , via the exogenous �nancial aid functions

fj(B; SAT ), for j = 0; 1:::J , with 0 denoting the general aid and j denoting college j-speci�c

aid. The �nal realizations are subject to post-application shocks � 2 RJ+1. � is i.i.d.

N(0;
�), where 
� is a diagonal matrix with �2�j denoting the variance of shock �j. The

realized �nancial aid for student i is given by

fji = maxffj(Bi; SATi) + �ji; 0g for j = 0; 1; ::J:

2.1.4 Student Preference

Given tuition pro�le t � ftjgJj=1, the ex-post value of attending college j for student i is
given by

uji(t) = (�tj + f0i + fji) + (ujTi + �ji) ; (1)

where tj is tuition for attending college j. The �rst parenthesis of (1) summarizes student

i�s net monetary cost to attend college j. Her expected total payo¤, net of e¤ort cost, is

captured by: ujTi, type Ti-speci�c preference, and �ji, her idiosyncratic taste.
18

An outside option is always available to the student and its net expected value is nor-

malized to zero. After application, the outside option is subject to a random shock �, which

is i.i.d. N(0; �2�), and the ex-post value of the outside option is u0i = � i.

17See the appendix for detailed functional forms.
18ujT�s are treated non-parametrically.
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2.1.5 College Payo¤

The payo¤ for college j 2 J is given by:

�j =
AP
a=1

!anja + (mj1tj +mj2t
2
j)�

AP
a=1

nja; (2)

where !a is the value of ability A = a, with !a+1 > !a and !1 normalized to 1. nja is the

measure of j�s enrollees with A = a. The �rst term in (2) is college j�s total enrollee ability.

The second term in (2) is college j�s payo¤ from its tuition revenue, where mj is college j�s

valuation of tuition relative to that of enrollee ability.19

2.1.6 Timing

First, colleges simultaneously announce tuition levels, to which they commit. Second, stu-

dents make their application decisions, and all colleges simultaneously choose admissions

policies. Finally, students learn about admission results and post-application shocks, and

then make enrollment decisions.20

2.1.7 Information Structure

Upon student i�s application, each college she applies to receives a signal s 2 f1; 2; ::sg drawn
from the distribution P (sjAi), the realization of which is known only to the college. For
A < A0, P (sjA0) �rst order stochastically dominates P (sjA):21 Conditional on the student�s
ability, signals are i.i.d. across the colleges she applies to.

P (sjA), the distributions of characteristics, preferences, payo¤ functions and �nancial aid
functions are public information. An individual student�s SAT score is known both to her

and to the colleges she applies to. A student has private information about her type T , her

idiosyncratic taste � and her family background B. To ease notation, let X � (T;B; �). After
application, the student observes her post-application shocks. For any individual applicant,

college j observes only her SAT and the signal she sends to j. In particular, it does not

observe whether the student also applies to other colleges.

19If college j uses tuition only as a tool to maximize enrollee ability, mj would be 0.
20This paper excludes early admissions, which is a very interesting and important game among top col-

leges. See, for example, Avery, Fairbanks and Zeckhauser (2003), and Avery and Levin (2010). For college
applications in general, however, early admissions account for only a small fraction of the total applications.
For example, in 2003, 17:7% of all four-year colleges o¤ered early decision. In these colleges, the mean
percentage of all applications received through early decision was 7:6%: Admission Trends Survey (2004),
National Association for College Admission Counseling.
21That is, if A < A0; then for any s 2 f1; 2; ::sg; Pr(s0 � sjA) � Pr(s0 � sjA0):
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2.2 Applications, Admissions and Enrollment

2.2.1 Enrollment Decision

Knowing her post-application shocks and admission results, student i chooses the best among

her outside option and admissions on hand, i.e., maxfu0i;fuji(t)gj2Oig, where Oi denotes
the set of colleges that have admitted student i. For students not admitted anywhere,

maxfuji(t)gj2; = �1. Let

v(Oi; Xi; SATi; �i; � ijt) � maxfu0i;fuji(t)gj2Oig (3)

be the optimal ex-post value for student i, given admission set Oi; and denote the associated

optimal enrollment strategy as d(Oi; Xi; SATi; �i; � ijt).

2.2.2 Application Decision

Given her admissions probability pj(Ai; SATijt) to each college j, which depends on her
ability and SAT , the value of application portfolio Y � J for student i is

V (Y;Xi; SATijt) �
X
O�Y

Pr(OjAi;SATi; t)E [v(Oi; Xi; SATi; �i; � ijt)]� C(jY j); (4)

where the expectation is over shocks (�i; � i), and jY j is the size of portfolio Y .

Pr(OjAi;SATi; t) =
Y
j2O

pj(Ai; SATijt)
Y

k2Y nO

(1� pk(Ai; SATijt))

is the probability that the set of colleges O � Y admit student i. The student�s application

problem is

max
Y�J

fV (Y;Xi; SATijt)g: (5)

Let the optimal application strategy be Y (Xi; SATijt):

2.2.3 Admissions Policy

Given tuition, a college chooses its admissions policy to maximize its expected payo¤, subject

to its capacity constraint. Its optimal admissions policy must be a best response to other

colleges�admissions policies while accounting for students�strategic behavior. In particular,

observing only signals and SAT scores of its applicants, the college has to infer: �rst, the

probability that a certain applicant will accept its admission, and second, the expected ability

of this applicant conditional on her accepting the admission, both of which depend on the
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strategies of all other players.22

Formally, given tuition pro�le t, students�strategies Y (�); d(�) and other colleges�admis-
sions policies e�j, college j solves the following problem:

max
ej(�jt)

f
X
s;SAT

ej(s; SAT jt)�j(s; SAT jt; e�j; Y; d)
j(s; SAT j�)�j(s; SAT j�) (6)

+ (mj1tj +mj2t
2
j)
X
s;SAT

ej(s; SAT jt)�j(s; SAT j�)�j(s; SAT j�)g

s:t:
X
s;SAT

ej(s; SAT jt)�j(s; SAT jt; e�j; Y; d)�j(s; SAT jt; e�j; Y; d) � �j

ej(s; SAT jt) 2 [0; 1];

where ej(s; SAT jt) is college j�s admissions policy for its applicants with (s; SAT ),
�j(s; SAT jt; e�j; Y; d) is the probability that such an applicant will accept college j�s ad-
mission, 
j(s; SAT jt; e�j; Y; d) is the expected ability of such an applicant conditional on
her accepting j�s admission, and �j(s; SAT jt; e�j; Y; d) is the measure of j�s applicants with
(s; SAT ).23 The �rst order condition for problem (6) is


j(s; SAT jt; e�j; Y; d) +mj1tj +mj2t
2
j � �j + �0 � �1 = 0;

where �j is the multiplier associated with capacity constraint, i.e., the shadow price of a

slot in college j. �0 and �1 are adjusted multipliers associated with the constraint that

ej(s; SAT ) 2 [0; 1]:24

If it admits an applicant with (s; SAT ) and the applicant accepts the admission, college

j must surrender a slot from its limited capacity, thus inducing the marginal cost �j. The

marginal bene�t is the expected ability of such an applicant conditional on her accepting

j�s admission plus her tuition contribution. Balancing between the marginal bene�t and the

marginal cost, the solution to college j�s admissions problem is characterized by:

ej(s; SAT jt)

8><>:
= 1 if 
j(s; SAT jt; e�j; Y; d) +mj1tj +mj2t

2
j � �j > 0

= 0 if 
j(s; SAT jt; e�j; Y; d) +mj1tj +mj2t
2
j � �j < 0

2 [0; 1] if 
j(s; SAT jt; e�j; Y; d) +mj1tj +mj2t
2
j � �j = 0

; (7)

22Conditioning on acceptance is necessary to make a correct inference about the student�s ability because
of the potential "winner�s curse": the student might accept college j�s admission because she is of low ability
and is rejected by other colleges.
23Appendix A.1 provides details on how to calculate �j(�) and 
j(�).
24�0; �1 are the multiplier associated with �j(s; SAT j�)�j(s; SAT j�)ej(s; SAT ) 2 [0; 1]:
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X
s;SAT

ej(s; SAT jt)�j(s; SAT jt; e�j; Y; d)�j(s; SAT jt; e�j; Y; d) � �j; (8)

and

�j

(
� 0 if (8) is binding
= 0 if (8) is not binding

:

To implement its admissions policy, college j will �rst rank its applicants with di¤erent

(s; SAT ) by their 
j(s; SAT jt; e�j; Y; d). All applicants with the same (s; SAT ) are identical
to the college and hence are treated equally. Everyone in an (s; SAT ) group will be admitted

if 1) this (s; SAT ) group is ranked highest among the groups whose admissions are still to

be decided, 2) 
j(s; SAT j�) + mj1tj + mj2t
2
j � 0; and 3) the expected enrollment of this

group, �j(s; SAT j�)�j(s; SAT j�), is no larger than college j�s remaining capacity, where j�s
remaining capacity equals �j minus the sum of expected enrollment of groups ranked above.

A random fraction of an (s; SAT ) group is admitted if 1) and 2) hold but 3) fails, where

the fraction equals the remaining capacity divided by the expected enrollment of this group.

As a result, a typical set of admissions policies for the ranked (s; SAT ) groups would be

f1; :::; 1; "; 0; :::; 0g, with " 2 (0; 1) if the capacity constraint is binding, and f1; :::; 1g if the
capacity constraint is not binding or just binding.

2.2.4 Link Among Various Players

The probability of admission to each college for di¤erent (A; SAT ) groups of students,

fpj(A; SAT jt)g, summarizes the link among various players. Knowledge of p makes the
information about admissions policies fej(s; SAT jt)g redundant. Students�application de-
cisions are based on p. College j can make inferences about �j(�) and 
j(�), and therefore
choose its admissions policy, based on p�j. The relationship between p and e is given by:25

pj(A; SAT jt) =
X
s

P (sjA)ej(s; SAT jt): (9)

2.2.5 Application-Admission Equilibrium

De�nition 1 Given tuition pro�le t, an application-admission equilibrium, denoted as AE(t),
is (d(�jt); Y (�jt); e(�jt)), such that
(a) d(O;X; SAT; �; �jt) is an optimal enrollment decision for every (O;X; SAT; �; �);
(b) Given e(�jt), Y (X;SAT jt) is an optimal college application portfolio for every (X;SAT ),
i.e., solves problem (5) ;

25The role of p as the link among players and the mapping (9) are of great importance in the estimation
strategy to be speci�ed later.
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(c) For every j, given (d(�jt); Y (�jt); e�j(�jt)), ej(�jt) is optimal admissions policy for college
j, i.e., solves problem (6) :

2.3 Tuition Policy

Before the application season begins, colleges simultaneously announce their tuition lev-

els, understanding that their announcements are binding and will a¤ect the application-

admission subgame. Although from the econometrician�s point of view the subsequent game

could admit multiple equilibria, I assume that the players agree on the equilibrium selection

rule.26 Let E (�jjAE(t)) be college j�s expected payo¤ under AE(t): Given t�j and the

equilibrium pro�les AE(�) in the following subgame, college j�s problem is

max
t0j�0

fE
�
�jjAE(t0j; t�j)

�
g: (10)

Independent of m, each college considers the strategic role of its tuition in the subsequent

AE(t0j; t�j). On the one hand, low tuition makes the college more attractive to students and

more competitive in the market. On the other hand, high tuition serves as a screening tool

and leads to a better pool of applicants if high-ability students are less sensitive to tuition

than low-ability students.27 Together with the monetary incentives of tuition revenue, such

trade-o¤s determine the college�s optimal tuition level.

2.4 Subgame Perfect Nash Equilibrium

De�nition 2 A subgame perfect Nash equilibrium for the college market is

(t�; d(�j�); Y (�j�); e(�j�)) such that:
(a) For every t, (d(�jt); Y (�jt); e(�jt)) constitutes an AE(t), according to De�nition 1;
(b) For every j, given t��j, t

�
j is optimal tuition for college j, i.e., solves problem (10) :

In the online appendix, I show the existence of equilibrium for a simpli�ed version of the

model with two colleges. The logic of the proof should apply to the full model. However,

a formal proof posts a great challenge, one which I have not yet been able to conquer.

Numerically, I have found equilibrium in all cases throughout my empirical analyses.

26The way in which the equilibrium selection rule is reached is beyond the scope of this paper. But as an
example, it may result from repeated interactions between players.
27This is a possible scenario. However, in the estimation, I do not impose any restriction on the relationship

between student ability and their sensitivity to prices.
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2.5 Discussion: A Closer Look at Modeling Choices

2.5.1 Financial Aid

In the model, �nancial aid is an exogenous stochastic function of student characteristics. Ar-

guably, �nancial aid is an important tool for colleges to compete for better students. Epple,

Romano and Sieg (2006) follow in this direction, however, they abstract from application

decisions to keep their analysis feasible. Modeling strategic �nancial aid decisions together

with student application decisions involves establishing a �xed point of �nancial aid to es-

tablish an equilibrium. However, �nancial aid, as a function of student characteristics, is of

in�nite dimension. Treating it as an equilibrium object together with applications makes

the empirical analysis intractable. I carry out my analysis in a way that complements Epple,

Romano and Sieg (2006), leaving the development of a modeling framework that combines

the strengths of these two papers to future research.

2.5.2 Student Preference

I treat students�type-speci�c preferences for colleges as parameters. These preferences re�ect

the expected total payo¤s (net of e¤ort cost) from attending a certain college group, which

di¤er across student types. One of the most important factors underlying these preferences

is students� job market outcomes after college.28 I am unable to model these underlying

forces primarily due to data limitations: most students in my sample are still in college and

I do not observe their job market outcomes.29 With limited information, I choose to impose

minimum structure on these preferences rather than making assumptions about how they

are formed. As future surveys from the NLSY97 become available, it will be promising to

model these underlying forces.

Another potentially important component is peer quality.30 In the current model, given

admissions probabilities, students� application strategies are independent, which yields a

unique equilibrium in the student-side problem. With peer e¤ects, multiple equilibria may

coexist in both the student-side and the college-side problem, inducing substantial complica-

tions into the model. In this paper, I focus on the interactions between colleges and students

and the competition among colleges.

28See, for example, Arcidiacono (2005).
29Most college applications in the sample occurred in 2003. Given the panel structure of NLSY 97, this

extension is feasible as future survey data become available.
30The literature on peer e¤ects in higher education has been controversial. For example, Sacerdote (2001)

and Zimmerman (2003) �nd peer e¤ects between roommates on grade point averages. Arcidiacono and
Nicholson (2005) �nd no peer e¤ects among medical students. Dale and Krueger (1998) have mixed �ndings.
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2.5.3 College Objective

In this model, I assume that colleges value student ability and tuition revenue.31 For example,

higher-ability students are more likely to do better in the job market, which enhances the

college�s prestige and attractiveness to future applicants. To incorporate such a mechanism

requires a long-run dynamic model. Without data necessary for analyzing the long-run

equilibrium, I focus on the short-run equilibrium. For the same reason, I assume that colleges

are faced with exogenous capacity constraints, which could be another control variable in

the long run.

I assume that colleges�preferences for student ability and tuition revenue are separable.

However, since tuition a¤ects a college�s pool of applicants, it enters the college�s objective

function in a non-separable way. A non-linear preference over tuition is assumed because

most colleges are non-pro�t, and a non-linear preference allows for possibly satiated prefer-

ence over tuition.32

2.5.4 Information Structure

I assume that a student knows her own ability whereas colleges can only observe noisy

measures of student ability. One might argue that neither party knows student ability.

However, I believe it is reasonable to assume that students have information advantages

relative to the colleges to which they are applying. As high school graduates, students have

been evaluated repeatedly. Although these evaluations may be noisy, students eventually

learn their ability by observing these signals over time. It is feasible and interesting to

extend the current model to a case where both parties are uncertain about student ability.

In this paper, I focus on the special case, which captures the main idea of information

asymmetry of the type that I consider.

3 Estimation Strategy and Identi�cation

3.1 Estimating Application-Admission Subgame

First, I �x the tuition pro�le at its equilibrium (data) level and estimate the parameters that

govern the application-admission subgame. To save notation, I suppress the dependence of

endogenous objects on tuition.

31A detailed modeling of how colleges set up their objectives is important but is beyond the scope of this
paper.
32I also tried some other functional forms. For example, a linear preference over tuition predicts much

higher tuition levels than are observed in the data.
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The estimation is complicated by potential multiple equilibria in the subgame and that

econometricians do not observe the equilibrium selection rule.33 One way to deal with this

complication is to impose some equilibrium selection rule assumed to have been used by the

players and to consider only the selected equilibrium. However, for models like the one in

this paper, there is not a single compelling selection rule (from the econometrician�s point

of view).34 I use a two-step strategy to estimate the application-admission subgame without

having to impose any equilibrium selection rule.

Each application-admission equilibrium is uniquely summarized in the admissions prob-

abilities fpj(A; SAT )g, which provide su¢ cient information for players to make their unique
optimal decisions. In the student decision model, fpj(A; SAT )g are taken as given. Step One
treats fpj(A; SAT )g as parameters and estimates them along with structural student-side

parameters, thereby identifying the equilibrium that generated the data. Step two imposes

colleges�optimal admissions policies, which yield a new set of admissions probabilities. Under

the true college-side parameters, these probabilities should match the equilibrium admissions

probabilities estimated in the �rst step.

3.1.1 Step One: Estimate Fundamental Student-Side Parameters and Equilib-
rium Admissions Probabilities

I implement the �rst step via simulated maximum likelihood estimation (SMLE): together

with estimates of the fundamental student-side parameters
�b�0�, the estimated equilib-

rium admissions probabilities bp should maximize the probability of the observed outcomes
of applications, admissions, �nancial aid and enrollment, conditional on observable student

characteristics, i.e., f(Yi;Oi; fi; dijSATi; Bi)gi. �0 is composed of 1) type-speci�c preference
parameters and idiosyncratic taste distribution parameters �0u = [fuj(T )g;

�
��j
	
]0, 2) ap-

plication cost parameters �0C = fC(n)g0, 3) �nancial aid parameters �0f , 4) the standard
deviation of the shock to the outside option �0� = �� and 5) the parameters involved in the

distribution of types �0T .

Suppose student i is of type T . Her contribution to the likelihood, denoted by

LiT (�0u;�0C ;�0f ;�0� ; p), is composed of the following parts:

LYiT (�0u;�0C ;�0f ;�0� ; p)� the contribution of Yi;
LOiT (p)� the contribution of OijYi;
LfiT (�0f )� the contribution of fijOi, and
33The problem of possible multiple equilibria is a di¢ cult, yet frequent problem in structual equilibrium

models. For example, the model by Epple, Romano and Sieg (2006) also admits multiple equilibria, and the
authors assume unique equilibrium in their estimation and other empirical analysis.
34See, for example, Mailath, Okuno-Fujiwara and Postlewaite (1993), who question the logical foundations

and performances of many popular equilibrium selection rules.
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LdiT (�0u;�0f ;�0�)� the contribution of dij(Oi; fi):
Hence,

LiT (�) = LYiT (�)LOiT (�)L
f
iT (�)LdiT (�):

Now, I will specify each part in detail. Conditional on (T; SATi; Bi), there are no unob-

servables involved in the probabilities of OijYi and fijOi. The probability of OijYi depends
only on ability and SAT , and is given by

LOiT (p) � Pr(OijYi; A; SATi) =
Y
j2Oi

pj(A; SATi)
Y

k2YinOi

[1� pk(A; SATi)]:

Let Jfi � f0; Oig be the sources of observed �nancial aid for student i, where 0 denotes
general aid. The probability of the observed �nancial aid depends only on SAT and family

background:

LfiT (�0f ) � Pr(fijOi; SATi; Bi)

=

8><>:
Y
j2Jfi

�(
fji�fj(SATi;Bi)

��j
)I(fji>0)�(

�fj(SATi;Bi)
��j

)I(fji=0) if Jfi 6= ;

1 otherwise
;

where �(�) and �(�) are the standard normal density and cumulative distribution, respec-
tively, and I (�) is the indicator function.
The choices of Yi and dij(Oi; fi) both depend on the unobserved idiosyncratic tastes �. Let

G(�; �; f�jgj2f0;OignJfi ) be the joint distribution of idiosyncratic taste, outside option shock
and unobserved �nancial aid shocks,

LYiT (�0u;�0C ;�0f ;�0� ; p)L
d
iT (�0u;�0f ;�0�) �Z

I(YijT; SATi; Bi; �)I(dijOi; T; SATi; Bi; �; �; f�jgj2f0;OignJfi ; ffjigj2Jfi )

dG(�; �; f�jgj2f0;OignJfi ):

The multi-dimensional integration has no closed-form solution and is approximated by a

kernel smoothed frequency simulator (McFadden (1989)).35

To obtain the likelihood contribution of student i, I integrate over the unobserved type:

Li(�0; p) =
X
T

P (T jSATi; Bi; �0T )LiT (�0u;�0C ;�0f ;�0� ; p): (11)

35See the online appendix for details.
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Finally, the log likelihood for the entire random sample is

eL(�0; p) =X
i

ln(Li(�0; p)): (12)

3.1.2 Step Two: Estimate College-Side Parameters

The college-side parameters to be estimated in Step Two, denoted �2, are signal distribution

P (sjA), capacity constraints � and values of abilities !. These are estimated via simulated
minimum distance estimation (SMDE). Based on b�0, I simulate a population of students and
obtain their optimal application and enrollment strategies under bp. The resulting equilibrium
enrollment in each college group should equal its expected capacity.36 These equilibrium

enrollments, together with bp, serve as targets to be matched in the second-step estimation.
The estimation explores each college�s optimal admissions policy: taking student strate-

gies and bp�j as given, college j chooses its admissions policy ej. This leads to the admissions
probability to college j for each (A; SAT ) type, according to equation (9). Ideally, the

admissions probabilities derived from Step Two should match bp from Step One, and the ca-

pacity parameters in Step Two should match equilibrium enrollments. The estimates of the

college-side parameters minimize the weighted sum of the discrepancies. Let b�1 = [b�00; bp0]0;
the objective function in Step Two is

min
�2
fq(b�1;�2)0cWq(b�1;�2)g; (13)

where q(�) is the vector of the discrepancies mentioned above, and cW is an estimate of the

optimal weighting matrix. The choice of W takes into account that q(�) is a function of b�1,
which are point estimates with variances and covariances.

36It is implicitly assumed that the tuition weights m are such that, at the data tuition level, the marginal
bene�t from admitting a student is non-negative, i.e., 
j(s; SAT j�) +mj1tj +mj2t

2
j � 0 for any (s; SAT ).

Given that 
j(s; SAT j�) � 1 by de�nition, this assumption means that the college does not "dislike" tuition
too much. Under this assumption, capacity constraints are binding in the realized equilibrium because the
data admissions rates are below 100% for all college groups.
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3.2 Tuition Weights

Given other colleges�equilibrium (data) tuition t��j, I solve college j�s tuition problem (10).
37

Under the true tuition weight parameters m, the optimal solution should match the data

tuition.38 The objective in Step Three is

min
m
f(t� � t(b�;m))0(t� � t(b�;m))g;

where t� is the data tuition pro�le, t(�) consists of each college�s optimal tuition, and b� �
[b�0; b�2] is the vector of fundamental parameter estimates from the previous two steps. I

obtain the variance-covariance of bm using the Delta method, which exploits the variance-

covariance structure of b�:
3.3 Identi�cation

3.3.1 Student-Side Parameters

The student-side model can be viewed as a �nite mixture of multinomial probits. In the

online appendix, I prove the identi�cation of a mixed probit model with two types.39 The

identi�cation in the more general case of mixed multinomial probits with multiple types

would require more complicated algebraic analysis but would nevertheless follow the same

logic. The observed variation in students�behavior arises from their heterogeneity both across

and within types. In order to disentangle these two sources of heterogeneity, I need additional

within-type variation that is driven by some observables. I assume that only SAT and family

income (a 5-year average) enter the type distribution, i.e., SAT and family (permanent)

income summarize all information that correlates with ability. By contrast, �nancial aid

37Given b�, t��j and somem, I examine college j�s expected payo¤at each trial tuition level t0j and obtain the
optimal tuition associated with thism. This procedure requires computing the series of application-admission
equilibria AE

�
:; t��j

�
, which can only be achieved through simulation. To do so, I use an algorithm motivated

by the rule of "continuity of equilibria," which requires, intuitively, that AE(t0j ; t
�
�j) be close to AE(tj ; t

�
�j)

when t0j is close to tj . Speci�cally, I start from the equilibrium at the data tuition level
�
t�j ; t

�
�j
�
, which is

numerically unique for nontrivial initial beliefs (p >> 0). AE(t�) is found to be unique numerically in my
search for equilibrium starting from 500 di¤erent combinations of nontrivial initial beliefs.
38Given that there is only a single college market, there are only four tuition observations on which to base

the estimation of the colleges�objective functions. Therefore, pursing a conventional estimation approach
is not sensible. Instead, I treat the four nonlinear best response functions as exact, which implies that the
econometrician observes all factors involved in a college�s tuition decision, and saturate the model. This
approach also enables me to recover the tuition weights without solving the full equilibrium of the model.
As is shown below, the �t to the tuition data is quite good, although there is no statistical criterion that can
be applied.
39The proof builds on Meijer and Ypma (2008), who show the identi�cation for a mixture of two univariate

normal distributions.
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depends on SAT and all family-background variables.40 For example, conditional on family

permanent income, family assets vary with factors, such as housing prices and stock prices,

that are not correlated with ability. Variations in �nancial aid have di¤erent impacts on

students across types, which helps to identify the type distribution and type-speci�c utilities.

Given the type distribution identi�ed from the mixture of probits, I now discuss the

major sources for the identi�cation of other student-side parameters. First, the probabilities

of admissions fpj (A; SAT )g are identi�ed mainly from the observed variation in admissions
across students with the same SAT but di¤erent family income, due to the exclusion re-

striction that family income a¤ects admissions rates only via ability. Second, the standard

deviation of the i.i.d. idiosyncratic tastes �� is identi�ed from the variation in expected �nan-

cial aid across students within a college, given that student utility is measured in monetary

units and that the coe¢ cient on net tuition is normalized to one. Third, application costs are

identi�ed mainly from the variation in the numbers of applications, using the restriction that

C (�) is the same across students.41 Finally, the fraction of admitted students who chose not
to attend any college serves as the major identi�cation source for �� , the standard deviation

of the outside option shock.

3.3.2 College-Side Parameters

The identi�cation of capacity parameters � follows directly from the equilibrium college

enrollments calculated based on b�1. The identi�cation of n bP (sjA)o is facilitated by the
restriction that signal distribution is the same across colleges. However, the vector of ability

values ! is not point identi�ed, even after normalizing !1. The reasoning is as follows: each

college j faces discrete (s; SAT ) groups of applicants and its admissions policy depends on

the rankings of these groups in terms of their conditional expected abilities. These relative

rankings remain unchanged for a range of !�s, implying that ! cannot be point identi�ed.

Consequently, I set up a grid of !�s and implement the second step estimation given each

of these !�s. The best �t occurs with !�s around [1; 2; 3]0; therefore, I �x b! = [1; 2; 3]0. At
other values of ! around [1; 2; 3]0, the estimates for the other parameters in steps two and

three will change accordingly. However, the counterfactual experiment results are robust.42

40This exclusion restriction is su¢ cient but not necessary for identi�cation. For example, I could allow
family assets to enter type distribution as a categorical variable, and to enter the �nancial aid function as a
continuous variable. The within-category variation in assets would be enough for identi�cation.
41For example, by comparing V (fjg) and V (;), I can identify

�
uj (A;Z)� C(1)

pj(SAT;A)

�
: Then I can sepa-

rately identify uj and C(1) because application cost is independent of SAT:
42The online appendix shows the counterfactual experiment results with alternative !�s around [1; 2; 3]0:
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4 Data

4.1 NLSY Data and Sample Selection

In NLSY97, a college choice series was administered in years 2003-2005 to respondents from

the 1983 and 1984 birth cohorts who had completed either the 12th grade or a GED at the

time of interview.43 Respondents provided information about each college to which they

applied, including name and location; any general �nancial aid they may have received;

whether each college to which they applied had accepted them for admission, along with

�nancial aid o¤ered. Information was asked about each application cycle.44 In every survey

year, the respondents also reported on the college(s), if any, they attended during the previous

year.45 Other available information relevant to this paper includes SAT=ACT score and

�nancial-aid-relevant family information (family income, family assets, race and number of

siblings in college at the time of application).

The sample I use is from the 2303 students within the representative random sample who

were eligible for the college choice survey in at least one of the years 2003-2005. To focus

on �rst-time college application behavior, I de�ne applicants as students whose �rst-time

college application occurred no later than 12 months after they became eligible. Under this

de�nition, 1756 students are either applicants or non-applicants.46 I exclude applications

for early admission.47 I also drop observations where some critical information, such as the

identity of the college applied to, is missing. The �nal sample size is 1646.

4.2 Aggregation of Colleges

Two major constraints make it necessary to aggregate colleges. One is computational feasi-

bility: with a large number of colleges, solving the student optimal portfolio problem and/or

computing the equilibrium poses major computational challenges.48 Another major con-

straint is sample size: without some aggregation, the number of observations for each option

would be too small to obtain precise parameter estimates. Consequently, I aggregate colleges

43See data appendix for more information about NLSY97.
44An application cycle includes applications submitted for the same start date, such as fall 2004.
45The NLSY97 geocode (restricted-use) data provide information on the names and locations of the colleges

to which the student applied.
46I exclude students who were already in college before their �rst reported applications. If a student is

observed in more than one cycle, I use only her/his �rst-time application/non-application information.
47There is no direct information on early admission; I identify early admission according to the rules

speci�ed in the data appendix.
48The choice set for the student application problem grows exponentially with the number of colleges.

Moreover, a �xed point has to be found for each college�s admissions policy in order to solve for the equilib-
rium.
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into groups and treat each group as one college in the estimation. By doing so, I abstract

from some idiosyncratic factors such as regional preferences that may be important at a

disaggregate level but are less likely to be important at a more aggregate level.49

The aggregation goes as follows: �rst, I divide all four-year colleges into private and

public categories, and then I use the within-category rankings from U.S. News and World

Report 2003-2006 for further division.50 Table 1 shows the detailed grouping: I group the

top 30 private universities and top 20 liberal arts colleges into Group 1, the top 30 public

universities into Group 2, and all other four-year private (public) colleges into Group 3

(Group 4).

Table 1.1 Aggregation of Colleges

Variable Group 1 Group 2 Group 3 Group 4

Num. of colleges (Potentiala) 51 32 1921 619

Num. of colleges (Appliedb) 37 32 312 292

Capacityc (%) 1:0 4:6 11:2 24:4

Group 1: Top private colleges; Group 2: Top public colleges;

Group 3: Other private colleges; Group 4: Other public colleges.

a. Total number of colleges in each group (IPEDS).

b. Number of colleges applied to by some students in the sample.

c. Capacity = Num. of students in the sample enrolled in group j/sample size.

To accommodate the aggregation of colleges, the empirical de�nitions of application,

admission and enrollment in this paper are as follows: a student is said to have applied to

group j if she applied to any college within group j; is said to have been admitted to group

j if she was admitted to any college in group j; and is said to have enrolled in group j if she

enrolled in any college in group j. With these de�nitions, this paper is meant to capture the

behavior of the majority of students: 60% of applicants in the sample applied to no more

than one college within a group; on the other hand, cross-group application is a signi�cant

phenomenon in the data. Table 1.2 shows, conditional on applying to the college group in

the row, the fraction of applicants that applied to each of the college groups in the column.

For example, 32:7% of Group 1 applicants also applied to Group 2. Moreover, among the

applicants who applied to both groups within the public/private category, very few applied

to cross-group colleges that are close in ranking.51

49Epple, Romano and Sieg (2006) focuses on private four-year colleges and aggregates them into six groups.
50The report years I use correspond to the years when most of the students in my sample applied to

colleges, and the rankings had been very stable during that period. See data appendix for more information.
51Among the applicants who applied to both groups within the public/private category, I de�ne a student

as a "close applicant" if the ranking distance is less than 10 between the best lower-ranked college and the
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Table 1.2 ApplicationsjApplied to a Certain Group

% Group 1 Group 2 Group 3 Group 4

Group 1 100:0 32:7 70:9 40:0

Group 2 12:2 100:0 39:9 52:7

Group 3 13:0 19:6 100:0 47:2

Group 4 4:1 14:5 26:4 100:0

Conditional on applying to the group in the row,

the fraction that applied to each group in the column.

I also adjust the de�nitions of tuition and �nancial aid to college aggregation. I use the

within-group average tuition as the group tuition, based on the tuition information from the

Integrated Postsecondary Education Data System (IPEDS). If a student received �nancial

aid o¤ers from more than one college within the group in which she enrolled, the �nancial

aid from the attended college is viewed as the aid she received from this group; if she was

o¤ered aid from more than one college within a group in which she did not enroll, the highest

�nancial aid from that group is used.52

4.3 Summary Statistics

Table 2 summarizes characteristics among non-applicants, applicants and attendees. Clear

di¤erences emerge between non-applicants and applicants: the latter are much more likely

to be female, white, with higher SAT scores and with higher family income. Conditional

on applying, attendees and non-attendees do not signi�cantly di¤er. Similar patterns have

been found in other studies using di¤erent data.53

Table 3 summarizes the distribution of application portfolio size. Fifty-�ve percent of

students did not apply to any four-year college. Among applicants, 67% applied to only one

group, and only 7% of applicants applied to three groups or more. Relating portfolio size to

student characteristics: whites, students with higher SAT and students with higher family

income are more likely to apply to more groups.

worst top college she applied to. Among Group 1-and-Group 3 applicants, 10% are close applicants. Among
Group 2-and-Group 4 applicants, there are no close applicants.
52Given the assumption that all colleges are identical within a group, the highest �nancial aid from the

group together with the non-pecuniary utility from that group is the highest bid for the student from that
group.
53For example, Arcidiacono (2005), using data from the National Longitudinal Study of the Class of 1972,

and Howell (2010), using data from National Education Longitudinal Study of 1988 report similar patterns.
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Table 2 Student Characteristics

Variable Non-Applicants Applicants Attendees

Female 43:2% 53:0% 54:1%

Black 17:7% 13:3% 12:1%

Family Incomea 39835:5 68481:1 70605:61

(32361:0) (51337:0) (51279:3)

Incb= 1 34:5% 13:7% 12:7%

Inc = 2 50:8% 48:9% 47:6%

Inc = 3 14:7% 37:5% 39:7%

SAT c= 1 79:8% 16:5% 13:7%

SAT = 2 17:0% 59:7% 60:6%

SAT = 3 3:2% 23:8% 25:7%

Observations 899 747 678

a. in 2003 dollars

b. Inc=1 if family income is below 25th percentile (group mean $10,017)

Inc=2 if family income is in 25-75th percentile (group mean $45,611)

Inc=3 if family income is above 75th percentile (group mean $110,068)

c. SAT=1 if SAT or ACT equivalent is lower than 800.54
;55

SAT=2 if SAT or ACT equivalent is between 800 and 1200.

SAT=3 if SAT or ACT equivalent is above 1200.

Table 3 Distribution of Portfolio Sizes (%)

Size= 0 Size= 1 Size= 2 Size= 3 Size= 4

All 54:6 31:0 11:2 2:9 0:3

White 53:3 31:6 11:7 3:1 0:3

Black 61:6 27:9 8:1 1:9 0:3

SAT = 1 85:4 12:7 1:4 0:5 0:0

SAT = 2 25:5 50:0 19:0 5:0 0:3

SAT = 3 14:0 49:8 28:0 6:8 1:4

Inc = 1 75:2 19:7 3:6 1:0 0:5

Inc = 2 55:6 32:4 10:3 1:7 0:0

Inc = 3 32:0 39:6 20:4 7:3 0:7

Table 4 shows group-speci�c application rates and admissions rates. The application rate,

de�ned as the fraction of applicants that apply to a certain group, increases as one goes from

54Students who did not take the SAT or ACT test are categorized into SAT=1 group, since their behavior
is very similar to those with low SAT/ACT scores.
55Score conversion follows SAT -ACT Concordance Tables (College Board).
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Group 1 to Group 4.56 However relative to their capacities (shown in Table 1.1), top colleges

receive disproportionately higher fractions of applications than lower-ranked colleges. For

example, Group 4 is almost 25 times as large as Group 1, but the application rate for Group

4 is only 10 times as high as that for Group 1. Consistently, the admissions rate increases

monotonically from 58% in Group 1 to 96% in Group 4.

Table 4 Application & Admission: All Applicants (%)

Group 1 Group 2 Group 3 Group 4

Application Rate 7:4 19:8 40:3 72:0

Admission Rate 58:2 76:4 91:7 95:7

Num of all applicants: 747

Application rate=num. of group j applicants/num. of all applicants

Admission rate=num. of students admitted to group j/num. of group j applicants

Table 5 shows the �nal distribution of students who obtained at least one admission.

Over 80% of them attended lower-ranked colleges, with Group 4 accommodating 56%: Only

2% attended colleges in the top-ranked private Group 1. Six percent of admitted students

chose the outside option, suggesting the existence of post-application shocks.

Table 5 Final Allocation of Admitted Students (%)

Group 1 Group 2 Group 3 Group 4 Outside

2:2 10:6 25:6 55:7 6:0

Num. of students with at least one admission: 720.

Table 6 summarizes tuition and �nancial aid. Private colleges are four to �ve times as

costly as public colleges of similar ranking. Within the public/private category, the higher-

ranked colleges are more costly. Relative to students admitted to top groups, a higher fraction

of students admitted to lower-ranked groups receive college �nancial aid. Conditional on

obtaining some aid, the amount of aid is monotone in the tuition cost.57 As shown in the

last column, 40% of admitted students receive some outside �nancial aid that helps to fund

college attendance in general, but the average amount of general aid is lower than that of

any college-speci�c aid.

56Application rates across groups will not necessarily add up to 100%; since some students applied to
multiple college groups.
57Financial aid can exceed tuition, since it may also cover other expenditures necessary for college atten-

dance.
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Table 6 Tuition and Financial Aid

Group 1 Group 2 Group 3 Group 4 General

Tuitiona 27009 5347 17201 3912 N=A

Fraction of Aid Recipientsb 42:4% 32:8% 67:1% 46:6% 39:9%

Mean Aid for Recipients 12836:1 8967:9 11346:6 5344:8 4325:6

a. Tuition and aid are measured in 2003 dollars.

b. Num. of aid recipients in the sample/num. of admitted students in the sample

5 Empirical Results

This section presents structural parameter estimates (with standard deviation in parenthesis)

and model �ts. I allow for six types of students, with (A;Z) 2 f1; 2; 3g � f1; 2g, three SAT
levels, and three signal levels:58 I allow the tuition weight vector m to di¤er across public

and private categories, but restrict it to be the same within the public/private category.

5.1 Student-Side Parameter Estimates

5.1.1 Preference Parameter Estimates

Table 7.1 reports the estimates of preference parameters. Rows 1 to 3 show the mean values

attached to colleges by type Z = 1 students with A = 1 to A = 3, respectively.  j(A)�s

shown in the next two rows are the additional values attached to each college group by

type Z = 2 students relative to type Z = 1 students, conditional on ability. That is,

uj(A;Z = 2) = uj(A;Z = 1)+  j(A).
59 The next three rows report uj(A;Z = 2). Within

the same Z type, students of di¤erent ability levels have very di¤erent valuations of colleges.

An average student of the lowest ability (A = 1) derives large negative utility from any

college, and her college utility levels are universally much lower than those of higher-ability

students. For students of the two higher ability levels, their valuations of colleges are not

universally monotone in ability: on average, A = 3 students value top colleges (Groups

1,2) more and lower-ranked colleges (Groups 3,4) less than A = 2 students do. Since these

preference parameters re�ect the expected total bene�ts, net of e¤ort costs, of attending

colleges, it is not completely surprising to see non-monotone preferences. It is reasonable

to believe that the e¤ort costs required in top colleges are higher than those required in

lower-ranked colleges, and that these costs decrease with student ability. Considering the

e¤ort costs and the probabilities of success in di¤erent colleges, a mediocre student might

58A; SAT and s go from low to high as the levels go from 1 to 3:
59I restrict  j(1) =  j(2):
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be better o¤ attending a lower-ranked college. Holding ability constant, Z = 2 type value

private colleges more and public colleges less than Z = 1 type. Private colleges and public

colleges have di¤erent features that may �t some students better than others. For example,

private colleges are usually smaller than public colleges, which may be an advantage for some

students but a disadvantage for others.

Table 7.1 Preference Parameter Estimates

Group 1 Group 2 Group 3 Group 4

uj(A = 1; Z = 1) �233937:51 �287044:58 �216980:82 �119861:20
(79801:99) (18949:38) (8143:23) (4483:13)

uj(A = 2; Z = 1) �222379:95 �97657:36 �20898:31 81493:20

(43606:00) (9341:44) (3203:74) (1096:97)

uj(A = 3; Z = 1) �57506:06 59719:85 �52037:77 11025:54

(3536:88) (6397:90) (6164:44) (4629:37)

 j(A = 1; 2) 159977:95 �22777:16 155710:58 �124851:87
(40945:39) (10115:50) (4188:71) (6790:05)

 j(A = 3) 181694:72 �66612:01 89018:65 �115946:48
(26718:71) (7528:33) (9597:78) (21069:53)

uj(A = 1; Z = 2) �73959:56 �309821:73 �61270:24 �244713:07
uj(A = 2; Z = 2) �62402:00 �120434:52 134812:27 �43358:67
uj(A = 3; Z = 2) 124188:65 �6892:15 36980:88 �104920:94
��j 115039:64 91646:92 77914:55 43567:67

(1164:68) (3807:92) (1964:19) (1506:58)

�� 10433:37

(2916:06)

uj(A;Z = 2) =uj(A;Z = 1)+ j(A)

The next row of Table 7.1 shows the standard deviations of idiosyncratic tastes: even

within T type, students are still very di¤erent in their tastes for colleges. For example,

although Group 1 colleges are worth only $124; 188 for an average student of (A = 3; Z = 2)

type, this value becomes $271; 618 at the 90th percentile.60 The last row shows the estimate

of the standard deviation of the ex post shock to the outside option. Relative to the variation

in permanent tastes, the variation in the ex post shocks is small: the major driving force

in a student�s decision is her permanent taste. However, together with the ex post �nancial

aid shocks, the ex post shock to the outside option introduces non-trivial uncertainty into

60Table 7.2 in the online appendix illustrates the importance of within-type taste dispersion by showing
the mean evaluations of colleges among all students, applicants and attendees, from a simulated example.
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a student�s application problem. For example, ex post, a student might opt out even with

some admissions in hand.

In sum, there is signi�cant heterogeneity in students�preferences for colleges, both across

types and within each type. Not only do students attach di¤erent values to the same college,

but they also rank colleges di¤erently. For example, attending an elite college is not optimal

for all students.61 Instead, each option (including the outside option) o¤ered in the college

market best caters to some groups of students.

5.1.2 Type Distribution Parameter Estimates

Table 8.1 shows the parameter estimates for the ordered logit distribution of ability condi-

tional on family income and SAT . Students with higher SAT scores and those with higher

family income are more likely to be of higher ability. Table 8.2 shows the distribution of Z

types by ability: at all ability levels, most students are of type Z = 1 (78% of all students),

but the fraction decreases as ability increases. In other words, higher-ability students are

more likely to be of the type that values private colleges over public colleges.

Table 8.1 Ordered Logit Ability Distribution

cuta1 cuta2 Family Income SAT = 2 SAT = 3

2:4782 5:4100 0:00001 2:8052 3:6927

(0:1555) (0:2220) (0:000002) (0:16147) (0:2297)

a. cut1; cut2 are the cuto¤ parameters for the ordered logit.

Table 8.2 Z Type Distribution

A = 1 A = 2 A = 3

Pr (Z = 1jA) 0:8347 0:7359 0:6313

(0:0695) (0:0265) (0:0814)

Pr (Z = 2jA) 0:1636 0:2641 0:3687

Based on the estimates in Tables 8.1 and 8.2, I simulate a population of students and

report their type distribution in Table 8.3. Of all students, 57% are of ability 1, and only

9% are of ability 3. Conditional on being a type Z = 2, the ability distribution �rst order

stochastically dominates that conditional on being a type Z = 1. The next three rows show

the relationship between family income and ability. The majority of students from both low-

and middle-income families are of ability 1; only 32% of students from high-income families

are of ability 1. Although ability 3 students are in the minority at all family income levels,

61In line with the �nding from this paper, Dale and Krueger (2002) also �nd that "a more selective school
is not the income-maximizing choice for all students."
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their fraction goes up steeply with family income levels. Finally, the last three rows illustrate

how noisy SAT is as a measure of ability. The ability distribution among SAT 1 students

is distinctively di¤erent from that among higher-SAT students: over 88% of SAT 1�s are of

ability 1 and fewer than 1% of them are of ability 3. Between SAT 2 and SAT 3 students,

the ability di¤erence is less obvious. SAT , as a noisy measure of student ability, is more

powerful in distinguishing ability 1 students from the others, but less so in distinguishing

between ability 2 and ability 3 students.

Table 8.3 Ability Distribution: Simulation

% A = 1 A = 2 A = 3

All 57:2 33:9 8:9

Z = 1 60:9 31:9 7:2

Z = 2 43:5 41:3 15:2

Inc = 1 76:7 20:5 2:8

Inc = 2 59:7 33:4 6:9

Inc = 3 32:4 48:3 19:3

SAT = 1 88:6 10:7 0:7

SAT = 2 28:3 58:3 13:4

SAT = 3 12:7 57:8 29:5

5.1.3 Application Costs and Financial Aid

Table 9 con�rms the hypothesis that applications are costly for students. The cost for

the �rst application is $6; 477, which is higher than the annual tuition of public colleges.

As the number of applications increases, the marginal cost rapidly decreases, suggesting the

existence of some economies of scale. Given the magnitude of the estimated application cost,

it is clear that most of the application cost comes not from application fees, but probably

from the time, e¤ort and psychological burdens involved in the application process.62

Table 9 Application Costs

n = 1 n = 2 n = 3 n = 4

C(n) 6477:40 7977:17 8335:54 8589:00

(323:92) (188:42) (202:62) (213:22)

Table 10 displays the estimated parameters for the Tobit speci�cations of �nancial aid.63

The left panel reports parameter estimates for general aid. Being black and having higher
62Understanding these costs is an important research question, but is not pursued in this paper.
63The explanatory variables are chosen based on published �nancial aid policies and on Tobit regressions

using only �nancial aid data: insigni�cant regressors are omitted. The results reported in Table 10 are
estimated jointly with other student-side parameters via SMLE.
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SAT scores increases one�s expected �nancial aid, while higher family income and/or assets

reduces it. These patterns also hold for college-speci�c aid, as shown in the right panel. The

e¤ect of SAT is greater in private colleges than in public colleges. Having siblings in college

at the time of application also increases college-speci�c �nancial aid. Top colleges are less

generous in giving �nancial aid, especially Group 1, although it charges the highest tuition.

By contrast, Group 3 is most generous in giving �nancial aid. The last row shows that there

is signi�cant variation in the �nal realization of �nancial aid.

Table 10

General aid College-Speci�c Aid

Coe¢ cient Std. Error Coe¢ cient Std. Error

Constant �4907:82 (817:06) �13664:32 (1756:28)

Black 1490:72 (915:24) 3277:25 (1033:22)

Family Income �0:0253 (0:0107) �0:0461 (0:0092)

Family Assets �0:0041 (0:0027) �0:0045 (0:0024)

SAT = 2 3993:10 (854:49) 8141:64 (1837:64)

SAT = 3 6081:56 (1079:32) 15227:48 (1843:60)

Sibling in Collegea 4336:62 (897:90)

(SAT = 2)� public �4068:05 (2487:06)

(SAT = 3)� public �7821:93 (2563:67)

Group 2 3993:83 (2870:72)

Group 3 9511:52 (1811:92)

Group 4 6854:97 (2278:03)

�� 8034:08 (169:34) 9758:76 (285:86)

a: Whether the student has some siblings in college at the time of application.

5.2 College-Side Parameter Estimates

This subsection reports the parameter estimates from the second-step SMDE.64 Table 11.1

reports parameter estimates for signal distribution conditional on ability. By sending out

signals, the highest ability students can successfully distinguish themselves from the others:

they are much more likely to send the highest signal, and almost never send out the lowest

signal. Ability 2 students are most likely to send a medium signal, and they distinguish

themselves from ability 1 students primarily by their reduced probability of sending out the

lowest signal. However, their chance of obtaining the highest signal is almost the same as

ability 1 students. As a result, it is hard to distinguish between the two lower-ability types

64The overall chi square goodness of �t statistic for SMDE is 41:06 (�227;0:05 = 40:11):
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by signals. Both SAT and signal contain signi�cant amount of noise, re�ecting the severity

of information friction in the college market.

Table 11.1 Signal Distribution

P (s = 1jA) P (s = 2jA) P (s = 3jA)
A = 1 0:2210 0:3851 0:3939

(0:0769) (0:0954)

A = 2 0:0253 0:5807 0:3940

(0:0047) (0:0810)

A = 3 0:000001 0:2876 0:7124

(0:0577) (0:0575)

The estimated expected capacities are shown in Table 11.2: the more selective colleges

and private colleges are smaller than their counterparts. The capacity estimates closely

match the capacities observed in the data shown in Table 1.1.

Table 11.2 Capacities

�1 �2 �3 �4

0:0096 0:0459 0:1082 0:2456

(0:0015) (0:0013) (0:0009) (0:0021)

Finally, Table 12 shows the results for tuition weights. For both private and public

colleges, mj1 > 0 and mj2 < 0, which suggests that in addition to using their tuition to

compete for better students, colleges have positive but bounded incentives to raise tuition.

Table 12 Tuition Weights

j 2 f1; 3g private j 2 f2; 4g public
mj1 mj2 mj1 mj2

0:0674 �0:0013 0:0073 �0:00063
(0:002) (0:0004) (0:0034) (0:00015)

Tuition is measured in thousands of dollars.

5.3 Model Fit

Given the parameter estimates, I �rst �x tuition pro�le at the data level and simulate the

student-side partial equilibriummodel (PE) and the application-admission equilibriummodel

(AE). Then I endogenize tuition and simulate the whole subgame perfect Nash equilibrium

model (SPNE).65

65This section shows model �ts for the whole sample. Model �ts by race, by SAT and by family income
are also good, and are available from the author on request.
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Table 13.1: Model vs. Data

Distribution of Portfolio Sizes (%)

Size Data PE AE SPNE

0 54:6 54:9 55:1 55:7

1 30:9 29:6 30:9 31:5

2 11:2 11:8 10:7 9:6

3 2:9 3:3 3:0 2:9

4 0:3 0:2 0:3 0:2

�2 Stat 2:95 0:47 5:64

PE: Partial Equilibrium Model

AE: Application-Admission Equilibrium

SPNE: Market Equilibrium Model

�24;0:05= 9:49

Table 13.1 shows the �t for the distribution of portfolio sizes: all three models �t the

data well, with SPNE slightly understating the fraction of multiple applications. Table 14.1

displays the �t of application and admissions rates among applicants. The �rst set of rows

show that all three models closely match application rates, except that the SPNE model

under-predicts the application rate for Group 4. The �t for admissions rates is shown in the

second set of rows: PE closely matches the admissions rates for all groups. AE and SPNE

under-predict the admissions rate for Group 1 and over-predict that for Group 3. Table 15

displays the �ts of student allocation. The �rst set of columns shows the allocation for all

students, and the second set of columns shows that for students with at least one admission:

all models closely �t the allocation patterns, with SPNE �t being the best.

Finally, Table 16.1 contrasts SPNE predicted tuition levels with the data. The model �ts

Group 4�s tuition almost perfectly, but it under-predicts College 2�s tuition and over-predicts

College 3�s tuition by about 10%.66

66The deviation of the SPNE tuition from data tuition comes mainly from the SPNE structure. Table
16.2 in the online appendix shows each college�s tuition as the best response to others�equilibrium (data)
tuition (i.e., the �t for the third-step estimation), which closely matches the data.
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Table 14.1 Model vs. Data

Application & Admission: All Applicants (%)

Application Rate Data PE AE SPNE

Group 1 7:4 7:6 7:1 7:4

Group 2 19:8 21:1 19:9 20:2

Group 3 40:3 41:4 41:2 41:9

Group 4 72:0 72:5 70:8 67:0�

Admission Rate

Group 1 58:2 54:2 44:1� 43:6�

Group 2 76:4 80:2 81:9 82:0

Group 3 91:7 90:9 95:3� 98:6�

Group 4 95:7 95:0 95:0 97:1
� �2 > �21;0:05

Table 15 Model vs. Data

Final Allocation of Students (%)

All Students Students With Some Admission

Data PE AE SPNE Data PE AE SPNE

College 1 1:0 1:1 1:0 1:0 2:2 2:7 2:2 2:2

College 2 4:6 4:5 4:3 4:5 10:6 10:6 10:1 10:5

College 3 11:2 10:7 11:3 11:1 25:6 24:9 26:4 25:8

College 4 24:4 23:5 24:0 24:3 55:7 54:8 55:9 56:3

Outside 58:8 60:2 59:4 59:1 6:0 7:0 5:3 5:1

�2 Stat. 2:11 0:54 0:12 1:93 1:54 1:45

�24;0:05= 9:49

Table 16.1: Model vs. Data

Tuition

Group 1 Group 2 Group 3 Group 4

Data 27009 5347 17201 3912

SPNE 26162 4555 19173 3925

6 Counterfactual Experiments

With the estimated model, which �ts the data reasonably well, I conduct three counterfac-

tual experiments. Comparisons are made between the baseline SPNE and the new SPNE,
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simulated using the same set of random draws.67

6.1 Perfect Signals

To quantify the impact of incomplete information on the equilibrium, I conduct a counter-

factual experiment where signals measure student ability perfectly, i.e., for all A, P (s =

AjA) = 1:68 ;69

Table C1.1 Perfect Signals

Distribution of Portfolio Sizes

Size = 0 Size = 1 Size = 2 Size = 3 Size = 4

Base SPNE 55:7 31:5 9:6 2:9 0:2

New SPNE 57:0 34:3 7:7 0:9 0:1

Table C1.1 contrasts distributions of portfolio sizes. Perfect signaling eliminates the ad-

mission uncertainty in most cases and enables students to target their applications more

e¤ectively.70 Students with no chance of admission are discouraged from applying at all;

hence fewer students apply. Moreover, when admission is certain, multiple applications

remain meaningful only as a way to guard against ex post shocks; this leads to fewer appli-

cations sent by applicants.

Table C1.2 shows changes in admissions rates: as student applications become better

targeted, colleges face only well-quali�ed applicants and all admissions rates increase to near

100%, with Group 1�s admissions rate being the highest. Obviously, in this case, "selectivity"

as re�ected by admissions rates bears no indication about a college�s quality, as measured

by student ability, as is shown in Table C1.3. The perfect ability measure enables the top

groups to �ll their capacities with (almost) only the highest-ability students. The lower-

ranked groups, although losing some of the highest-ability students, are (almost) free of the

lowest-ability students. As a result, average student ability increases for all college groups.

67In simulating the baseline model and the counterfactual experiments, I tried a wide range of initial
guesses in my search for equilibrium. For each model, I �nd only one equilibrium.
68With perfect signals, SAT no longer a¤ects any decision.
69The results from this experiment serve as an upper bound on the impacts of policies that aim to better

measure student abilities.
70With perfect signals, students would face admission probabilities of either 1 or 0 in most cases. But a

student is still subject to rationing if a college�s remaining capacity cannot accommodate all applicants in
her ability group.

33



Table C1.2 Perfect Signals

Admission Rates

% Group 1 Group 2 Group 3 Group 4

Base SPNE 43:6 82:0 98:6 97:1

New SPNE 99:3 97:4 97:4 98:2

Table C1.3 Perfect Signals

Ability Distribution Within Each Destination

% Group 1 Group 2 Group 3 Group 4 Outside

Base SPNE

A = 1 3:7 0:2 7:4 0:9 94:9

A = 2 6:5 15:7 80:9 91:9 3:0

A = 3 89:9 84:1 11:7 7:2 2:1

New SPNE

A = 1 0:0 0:0 1:8 0:0 96:4

A = 2 0:0 0:2 86:6 94:0 2:4

A = 3 100:0 99:8 11:6 6:0 1:2

Table C1.4 shows the changes in tuition under the new SPNE. Given perfect signals,

colleges no longer need to use tuition as a screening tool. All colleges except Group 1 lower

their tuition. Relative to the number of students with highest ability and a strong preference

for Group 1, the slots in Group 1 are still scarce. When the signal is perfect, not only does

Group 1 admit only the highest-ability students, but it also charges higher tuition. Other

colleges do not enjoy the same preferable market position: the perfect signal drives up their

competition for better students, which drives down their tuition.

Table C1.4 Perfect Signals

Tuition

Group 1 Group 2 Group 3 Group 4

Base SPNE 26162 4555 19173 3925

New SPNE 26409 3307 16579 2956

Finally, changes in student welfare are reported in Table C1.5. The lowest ability students

lose signi�cantly, since they are denied admission to almost any college. However, all other

students gain, and the highest-ability students bene�t the most. On average, student welfare

increases by 6%, 24% of which comes directly from tuition changes.
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Table C1.5 Perfect Signals

Mean Student Welfare

Base SPNE ($) New SPNE($) Change ($) Change (%)

All 41402 43860 2458 5:94

A = 1 677 162 �515 �76:07
A = 2 98630 103373 4743 4:81

A = 3 84673 97453 12780 15:09

6.2 Funding Cuts

Public colleges rely on government funding as a major source of revenue, and government

funding is subject to shocks. For example, in the recent government budget crisis, by Sep-

tember 2009, at least 34 states had implemented funding cuts to public colleges and univer-

sities.71 To balance their budgets, public colleges would be under the pressure to increase

their tuition.72 The second experiment examines the equilibrium e¤ects of such funding cuts

on the college market. I �x all the other parameters at their original levels and increase m1

for public colleges by 10%, thus pushing public colleges to increase tuition.

Table C2.1 Funding Cuts

Tuition

Group 1 Group 2 Group 3 Group 4

Base SPNE 26162 4555 19173 3925

New SPNE 26401 5034 19355 4801

The new equilibrium tuition levels are shown in Table C2.1. Top public colleges (Group2)

increase their tuition by about 10%, and lower-ranked public colleges (Group 4) increase their

tuition by 22%. The overall increase in public tuition, weighted by enrollment, is 20%. More

interestingly, we would like to see how private colleges adjust their tuition. Whether they

would increase their tuition is not clear a priori because they care about both tuition revenue

and student ability. In this particular case, private colleges also increase tuition, but by less

than 1%: Two factors help explain this result: �rst, higher tuition increases revenue. Second,

although lower tuition would help private colleges attract more able students from public

colleges, it also attracts less able students, which could lead to a lower-quality student body.

71For example, the University of California and California State University received 20% less state funding
in 2009 than they did in 2007.
72There may be other actions by public colleges in response to funding cuts. This experiment assumes

that funding cuts directly a¤ect only tuition policy, which is plausibly one of the most important channels.
Caveat should be taken as other direct e¤ects are assumed away.
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Table C2.2 reports changes in student welfare: all students lose, and the mean welfare

decreases by $700. If the government uses the increased public tuition revenue on a one-for-

one basis to save on education expenses, it could save $234 per student, which is only 1=3

of the welfare loss su¤ered by students.

Table C2.2 Funding Cuts

Mean Student Welfare

Base SPNE New SPNE($) Change ($)

All 41402 40703 �699
A = 1 677 649 �28
A = 2 98630 97018 �1612
A = 3 84673 83149 �1524

6.3 Creating More Opportunities

Finally, I use the model to examine to what extent the government can further expand

college access by increasing the supply of colleges. I increase the capacity of the lower-ranked

public colleges (Group 4) by growing magnitudes while keeping the capacities of other groups

�xed.73 The response of college enrollment to the increase in supply is shown in Figure 3. At

the beginning, there is a one-to-one response of college enrollment to the increase in supply.

Then, enrollment reaches a satiation point where there is neither excess demand nor excess

supply of colleges in Group 4 and the equilibrium outcomes remain the same thereafter. The

following tables report the case when Group 4�s supply is at the satiation point.

Table C3.1 reports changes in tuition. To attract enough students, Group 4 cuts its

tuition from $3; 925 to an almost negligible level of $136. Its private counterpart, Group 3,

also lowers its tuition by about 9%.74 However, the two top groups increase their tuition. To

better understand the di¤erence in colleges�tuition adjustments, we need to jointly consider

their reactions in tuition and admission policies.

Table C3.1 Increasing Supply

Tuition

Group 1 Group 2 Group 3 Group 4

Base SPNE 26162 4555 19173 3925

New SPNE 27549 6473 17394 136

73Similar results hold in analogous experiments with Group 3�s capacity. I increase the supply of lower-
ranked colleges because they are most relevant to college access.
74Colleges do not have to �ll their capacities, and they can charge high tuition and leave some slots vacant.

However, under the current situation, it is not optimal for them to do so.
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Figure 1: Enrollment & Expansion of Lower-Ranked Groups

Table C3.2 Increasing Supply

Admission Rates

% Group 1 Group 2 Group 3 Group 4

Base SPNE 43:6 82:0 98:6 97:1

New SPNE 47:7 99:0 99:1 100:0

Table C3.3 Increasing Supply

Attendance

% Base SPNE New SPNE All Open&Free

All 40:9 43:0 51:1

A = 1 1:9 3:2 14:9

A = 2 94:7 97:7 99:4

A = 3 86:4 90:3 98:6

Table C3.2 indicates that admissions rates increase in all colleges and reach (almost) 100%

except for Group 1. The major driving forces for the increased admissions rates are likely

to di¤er across college groups. For lower-ranked groups, higher admissions rates and lower

tuition re�ect their e¤orts to enroll enough students. Top groups increase their admissions

rates mainly because they are faced with a better self-selected applicant pool: the increased

tuition in top groups push, and the tuition and admissions policies in lower-ranked colleges

pull lower-ability applicants toward lower-ranked groups.

Table C3.3 shows the allocation e¤ect. The �rst row displays the attendance rate over

all students: regardless of the 100% admissions rate and the dramatically lowered tuition in

Group 4, only 2:1% more students are drawn into colleges. Since the supply of colleges in
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Group 4 exceeds demand if its capacity is further increased, this 2:1% increase represents

the upper limit to which the government can increase college attendance by increasing the

supply of Group 4 colleges. To further understand these equilibrium results, I conduct a

partial equilibrium experiment where all colleges are open and free, and the attendance rate

is reported in the last column of Table C3.3: only 51%, or 10% more students, would attend

colleges under this condition. Therefore, neither college capacity nor tuition is a major

barrier to college access. A vast majority of students who do not attend colleges under the

base SPNE prefer the outside option over any college option. Among them, most are of low

ability. In fact, as indicated in the last three rows of Table C3.3, only 2% of the lowest-ability

students attend college in the base SPNE, and fewer than 15% of them would attend college

even if colleges were free and open. In contrast, the majority of students of higher ability

attend college in the base SPNE, and almost all of them would attend college if colleges

become free and open. The major limit on college access, therefore, is ability and associated

preferences.75

7 Conclusion

In this paper, I have developed and structurally estimated an equilibriummodel of the college

market that incorporates tuition setting, applications, admissions and enrollment. In the

model, students are heterogeneous in their abilities and preferences. They face uncertainty

and application costs when making their application decisions. Colleges, observing only

noisy measures of student ability, compete for more able students via tuition and admissions

policies. I have estimated the structural model via a three-step estimation procedure to cope

with the complications caused by potential multiple equilibria. The empirical results suggest

that the model closely replicates most of the patterns in the data.

The estimated structural model has been used to conduct three counterfactual experi-

ments that examine, respectively, the distortion imposed on the market by incomplete infor-

mation, the equilibrium impacts of funding cuts to public colleges, and the extent to which

the government can further expand college access by increasing the supply of lower-ranked

colleges. The results suggest that 1) neither tuition cost nor college capacity is a major

obstacle to college access, 2) a large fraction of students, mainly low-ability students, prefer

the outside option over any college option, and 3) expanding the supply of colleges only

draws at most 2:1% more students into colleges.

The methods developed in this paper and the main empirical �ndings are promising for

75Similar conclusions are drawn in earlier studies. See, for example, Cameron and Heckman (1998) and
Keane and Wolpin (2001).
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future research. Building on Epple, Romano and Sieg (2006) and this paper, a model that

endogenizes applications, admissions and �nancial aid would provide a more comprehensive

view of the college market. Building on Arcidiacono (2005) and this paper, a model that

studies the strategic interactions between colleges and students and links them to students�

labor market outcomes will also be an important extension.

Another extension is to control for additional sources of observed heterogeneity, such

as minority status. There are di¤erent ways to incorporate such heterogeneity into the

model. For example, a¢ rmative action, in terms of more preferable admissions rates for

minority groups, may result from colleges�pursuit of racial diversity, or race-speci�c ability

distributions, or some combination of both.76 All of these conjectures would lead to di¤er-

ent equilibrium results, which could be tested against the data. The ability to distinguish

between these di¤erent sources would allow for a better evaluation of a¢ rmative action.

Finally, endogenizing capacity constraints and studying the long-run equilibrium would

lead to a better understanding of the trend of college tuition and attendance. One approach

to implement this extension is to introduce a cost function for college education, assuming

free entry to the market. Equilibrium of the model would then depend on the form of the

cost function. Estimation of such a model would require additional data on college expenses

and non-tuition revenues, as well as application and admissions data over multiple years.
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APPENDIX

A. Model Details:
A1. College Admission Problem: �j(s; SAT jt; e�j; Y; d) and 
j(s; SAT jt; e�j; Y; d)
All objects de�ned in A1 depend on ft; e�j; Y; dg. To save notation, the dependence

is suppressed. Let Pr(acceptjX;SAT; �; �; j) be the probability that a Group j applicant
with characteristics (X;SAT; �; �) accepts j�s admission. Let F (X; �; �js; SAT; j) be the
distribution of (X; �; �) conditional on (s; SAT ) and application to j. The probability that

an applicant with (s; SAT ) accepts j�s admission is:

�j(s; SAT ) =

Z
Pr(acceptjX;SAT; �; �; j)dF (X; �; �js; SAT; j).

Let Pr(O�jjA; SAT ) �
Y
l2Onj

pl(A; SAT )
Y

k2Y nO

(1� pk(A; SAT )) be the probability of admis-

sion set O for a student with (A; SAT ), with college j admitting her for sure,

Pr(acceptjX;SAT; �; �; j) =
X

O�j�Y (X;SAT )nfjg

Pr(O�jjA; SAT )I(j = d(X;SAT; �; �; O)):

That is, the student will accept j�s admission if j is the best post-application choice for her.

The distribution F (X; �; �js; SAT; j) is given by

dF (X; �; �js; SAT; j) = P (sjA)I(j 2 Y (X;SAT ))dF (X; �; �jSAT )R
P (sjA)I(j 2 Y (X;SAT ))dF (X; �; �jSAT ) ;

where F (X; �; �jSAT ) = P (T jSAT;B)G(�; �; �)H(BjSAT ) is exogenous. Finally, the ex-
pected ability of applicant (s; SAT ) conditional on acceptance is


j(s; SAT ) =

R
A� Pr(acceptjX;SAT; �; �; j)dF (X; �; �js; SAT; j)

�j(s; SAT )
:

A2. Proof of existence in a simpli�ed model.
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Assume there are two colleges j 2 f1; 2g, a continuum of students divided into two ability
levels. The utility of the outside option is normalized to 0. The utility of attending college

1 is u1(A) for all with ability A, and that of attending college 2 is u2(A) + �, where � is i.i.d.

idiosyncratic taste. There are two SAT levels and two signal levels. There is no ex-post

shock. Some notations to be used: for an (A; SAT ) group, let the fraction of students that

do not apply to any college be �0A;SAT , the fraction of those applying to college j only be

�jA;SAT and the fraction applying to both be �
12
A;SAT . For each (A; SAT ) group, �A;SAT 2 �,

a 3-simplex. For all four (A; SAT ) groups, � 2 � � �4. On the college side, each college

chooses admissions policy ej 2 [0; 1]4, where 4 is the number of (s; SAT ) groups faced by
the college.

Proposition 1 For any given tuition pro�le t, an application-admission equilibrium exists.

Proof. Step 1: The application-admission model can be decomposed into the following
sub-mappings:

Taking the distribution of applicants, and the admissions policy of the other college as given,

college j�s problem (6) can be viewed as the sub-mapping

Mj : �� [0; 1]4 � [0; 1]4;

for j = 1; 2. Taking college admissions policies as given, the distribution of students is

obtained via the sub-mapping

M3 : [0; 1]
4 � [0; 1]4 ! �:

An equilibrium is a �xed point of the mapping:

M : �� [0; 1]4 � [0; 1]4 � �� [0; 1]4 � [0; 1]4

s:t: � 2 M3(e1;e2)

ej 2 Mj(�; ek) j; k 2 f1; 2g; j 6= k:

Step 2: Show that Kakutani�s Fixed Point Theorem applies in mapping M and hence an

equilibrium exists.

1) The domain of the mapping, being the product of simplexes, is compact and non empty.

2) It can be shown that the correspondence Mj(�; �) is compact-valued, convex-valued and
upper-hemi-continuous, for j = 1; 2. In particular, the (s; SAT )0th component ofMj(�; ek) is

characterized by (7) and (8), where 
j(s; SAT ) +mj1tj +mj2t
2
j � �j is continuous in (�; ek):

3) Aggregate individual optimization into distribution of students �.
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Generically, each student has a unique optimal application portfolio as the solution to (5).

For given (A; SAT ), there exist ��(e) � ���(e), both continuous in e, such that:

For � � ��(e), Y (A; SAT; �) =

(
f2g if C(2)� C(1) > k1(e)

f1; 2g otherwise
;

for � 2 [���(e); ��(e)); Y (A; SAT; �) = f1; 2g; and

for � < ���(e), Y (A; SAT; �) =

(
f1g if C(1) � k2(e)

; otherwise
,

where k1(e) and k2 (e) are continuous in e: Therefore, the (A; SAT ) population can be

mapped into a distribution �A;SAT 2 �, and this mapping is continuous in e. Because the
mapping from [0; 1]4 � [0; 1]4 into the individual optimal portfolio is a continuous function,
and the mapping from the individual optimization to � is continuous, the composite of these

two mappings, M3, is single-valued and continuous.77

Given 1)-3), Kakutani�s Fixed Point Theorem applies.
78

Since for every t, AE(t) exists in the subsequent game, an SPNE exists if a Nash equilib-

rium exists in the tuition setting game. Let tj denote some large positive number, such that

for any t�j, the optimal tj < tj. tj exists because the expected enrollment, hence college j�s

payo¤, goes to 0 as tj goes to 1. De�ne the strategy space for college j as [0; tj], which is
nonempty, compact and convex. The objective function of college j is continuous in t, since

the distribution of applicants, and hence the total expected ability, is continuous in t. Given

certain regularity conditions, the objective function is also quasi-concave in tj: The general

existence proof for Nash equilibrium applies.

B. Data Details
Empirical De�nition of Early Admission:

1) Applications were sent earlier than Nov. 30th, for attendance in the next fall semester

and

2) The intended college has early admissions/ early decision/ rolling admissions/ priority

admissions policy,79 and

3) Either a: one application was sent early and led to an admission or

b: some application(s) was (were) sent early but rejected, and other application(s) was

(were) sent later.

77In the case of four schools, � becomes a 3-dimension vector, as are the cuto¤ tastes. To show continuity,
we change one dimension of � at a time while keeping the other dimensions �xed.
78When there are J > 2 schools, Step 1 of the proof can be easily extended. In Step 2, �, and hence the

cuto¤s, will be of j � 1 dimensions. Obtaining an analytical solution to these cuto¤s becomes much more
challenging.
79The data source for college early admission programs is 1) Christopher et. al. (2003), and 2) web

information posted by individual colleges.
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C. Detailed Functional Forms
C1. Conditional Ability Distribution: for a = 1; 2; 3

Pr(Ai = a) =
1

1 + e�cuta+�1yi+�2I(SATi=2)+�3I(SATi=3)

� 1

1 + e�cuta�1+�1yi+�2I(SATi=2)+�3I(SATi=3)

where yi denotes family income of i, cut0 = �1 and cut3 = +1:

C2. Financial Aid Functions:

1) General Aid:

f0(SATi; Bi) = �00 + �01I(racei = black) + �02I(SATi = 2) + �03I(SATi = 3)

+�04yi + �05asseti

f0i = maxff0(SATi; Bi) + �0i; 0g;

where �0i~i:i:d:N(0; �
2
f0
):

2) College-Speci�c Financial Aid:

fj(SATi; Bi) =

�10 +�11I(racei = black) + �12I(SATi = 2) + �13I(SATi = 3) + �
1
4yi + �15asseti

+�16I(nsib > 0) + �17I(SATi = 2)I(j 2 public) + �18I(SATi = 3)I(j 2 public)
+�19I(j = 2) + �110I(j = 3) + �111I(j = 4)

fji = maxffj(SATi; Bi) + �ji; 0g

where nsib denotes the number of siblings in college at the time of i�s application and

�ji~i:i:d:N(0; �
2
f1
):

C3. Preferences: uj(A;Z = 1) are fully non-parametric and uj(A;Z = 2) = uj(A;Z =

1) +  j(A), with the restriction that  j(1) =  j(2):
80

D. Details on Estimation
D1. Details on SMLE:

80This restriction is imposed to save the number of parameters. The restricted model cannot be rejected
at 10% signi�cance level.
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(1) Approximate the following integration via a kernel smoothed frequency simulator 81Z
I(YijT; SATi; Bi; �)I(dijOi; T; SATi; Bi; �; �; �)dG(�; �; �): (14)

For each student (SATi; Bi), I draw shocks f(�ir; � ir; �ir)gRr=1 from their joint distribution
G(�): These shocks are the same across T for the same student i, but are i.i.d. across

students. All shocks are �xed throughout the estimation. Let ujir be the ex-post value of

college j for studentir with (T; SATi; Bi; �ir; � ir; �ir), let vir = maxf0; fujirgj2Oig, let Vir(Y )
be the ex-ante value of portfolio Y for this student, and V �

ir = maxY�JfVir(Y )g. (14) is then
approximated by:

1

R

RX
r=1

exp[(Vir(Yi)� V �
ir)=� 1]P

Y�J exp[(Vir(Y )� V �
ir)=� 1]

exp[(udiir � vir)=� 2]P
j2Oi exp[(ujir � vir)=� 2]

;

where � 1; � 2 are smoothing parameters. When � ! 0, the approximation converges to the

frequency simulator.

(2) Solving the optimal application problem for student (T; SATi; Bi; �ir) :

Vi(Y ) =
X
O�Y

Pr
i
(O)E(�;�)maxfu0ir;fujirgj2Og � C(jY j):

The Emax function has no closed-form expression and is approximated via simulation. For

each (T; SATi; Bi; �ir), draw M sets of shocks f(�m; �m)g
M
m=1. For each of the M sets of

(T; SATi; Bi; �ir; �m; �m), calculate maxfu0irm;fujirmgj2Og, where ujirm denotes ujir evalu-

ated at the shock (�m; �m): The Emax is the average of these M maximum values.

D2. Details on the Second-Step SMDE:

(1) Targets to be matched: for each of the Groups 2; 3 and 4, there are 9 admissions

probabilities to be matched fpj (A; SAT )g(A;SAT )2f1;2;3g�f1;2;3g. For Group 1, there are 6
admissions probabilities to be matched. Since no one in SAT = 1 group applied to Group

1, fp1 (A; SAT = 1)gA2f1;2;3g are �xed at 0. The other four targets are the equilibrium

enrollments simulated from the �rst step. In all, there are 37 targets to be matched using

college-side parameters: fP (sjA)g; f�jgj, ten of which are free.
(2) Optimal Weighting Matrix:

Let �� be the true parameter values. The �rst-step estimates b�1, being MLE, are as-
ymptotically distributed as N(0;
1). It can be shown that the optimal weighting matrix

81I describe the situation where I do not observe any information about the student�s �nancial aid. For
students with some �nancial aid information, the observed �nancial aid replaces the random draw of the
corresponding �nancial aid shock.
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for the second-step objective function (13) is W = Q1
1Q
0
1, where Q1 is the derivative of

q(�) with respect to b�1, evaluated at �b�1;��2�. The estimation of W involves the following

steps:

1) Estimate the variance-covariance matrix b
1 : in the case of MLE, this is minus the
outer product of the score functions evaluated at b�1. The score functions are obtained via
numerically taking partial derivatives of the likelihood function with respect to each of the

�rst step parameters evaluated at b�1:
2) Obtain preliminary estimates e�2 � argmin�2fq(b�1;�2)0fWq(b�1;�2)g, wherefW is any

positive-de�nite matrix. The resulting e�2 is a consistent estimator of ��2:
3) Estimate Q1 by numerically taking derivative of q(�) with respect to b�1, evalu-

ated at
�b�1; e�2�. In particular, let �m denote a vector with zeros everywhere but the

m�th entry, which equals a small number "m. At each
�b�1 +�m; e�2�, I simulate the

student decision model and calculate the targets for the second-step estimation. Then

holding student applications �xed, I solve for college optimal admissions and calculate

the distance vector q
�b�1 +�m; e�2�. The m�th component of Q1 is approximated by

[q
�b�1 +�m; e�2�� q

�b�1; e�2�]="m:
E. Identi�cation of A Mixture of Two Probits
Assume there are two unobserved types of individuals A 2 f1; 2g, and Pr(A = 1) = �.

Let the continuous variable z 2 Z � R be an observed individual characteristics and f (�) be
a di¤erentiable function of z. Let y 2 f0; 1g be the observed discrete choice, which relates
to the latent variable y� in the following way:

y(z) = 1 if only if y�(z) � f(z) + u1I(A = 1) + u2I(A = 2) + � > 0

where �~i:i:d:N(0; 1). The model implies that

P (z) � Pr(y(z) = 1) = ��(f(z) + u1) + (1� �)�(f(z) + u2) (15)

Theorem 1 Assume that 1) � 2 (0; 1), 2) there exists an open set Z� � Z such that for

z 2 Z�, f 0(z) 6= 0. Then the parameters � = (�; u1; u2)0 in (15) are locally identi�ed.

Proof. The proof draws on the well-known equivalence of local identi�cation with positive
de�niteness of the information matrix. In the following, I will show the positive de�niteness

of the information matrix for model (15) :

Step 1. Claim: The information matrix I(�) is positive de�nite if and only if there exist no

w 6= 0, such that w0 @P (z)
@�

= 0 for all z.
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The log likelihood of an observation (y; z) is

L (�) = y ln(P (z)) + (1� y) ln(1� P (z)):

The score function is given by

@L

@�
=

y � P (z)

P (z) (1� P (z))

@P (z)

@�
:

Hence, the information matrix is

I(�jz) = E

�
@L

@�

@L

@�0
jz
�
=

1

P (z) (1� P (z))

@P (z)

@�

@P (z)

@�0
:

Given P (z) 2 (0; 1), it is easy to show that the claim holds.

Step 2. Show w0 @P (z)
@�

= 0 for all z =) w = 0:
@P (z)
@�

is given by:

@P (z)

@�
= �(f (z) + u1)� �(f (z) + u2)

@P (z)

@u1
= ��(f (z) + u1)

@P (z)

@u2
= (1� �)�(f(z) + u2)

Suppose for some w; w0 @P (z)
@�

= 0 for all z :

w1[�(f (z) + u1)� �(f (z) + u2)] + w2��(f (z) + u1) + w3(1� �)�(f(z) + u2) = 0

Take derivative with respect to z evaluated at some z 2 Z�

w1[�(f (z) + u1)� �(f (z) + u2)]f
0(z) + w2��

0(f (z) + u1)f
0 (z) (16)

+w3(1� �)�0(f(z) + u2)f
0 (z) = 0:

De�ne 
 (z) = �(f(z)+u1)
�(f(z)+u2)

, divide (16) by �(f (z) + u2) :

w1[
 (z)� 1]� w2�(f (z) + u1)
 (z)� w3(1� �)(f(z) + u2) = 0


 (z) [w1 � w2�(f (z) + u1)]� [w1 + w3(1� �)(f(z) + u2)] = 0 (17)

Since 
(z) is a nontrivial exponential function of z, (17) hold for all z 2 Z� only if both
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terms in brackets are zero for each z 2 Z�, i.e.

w1 � w2�(f (z) + u1) = 0 (18)

w1 + w3(1� �)(f(z) + u2) = 0:

Take derivative of (18) again with respect to z, evaluated at z 2 Z� :

w2�f
0 (z) = 0

w3(1� �)f 0(z) = 0:

Since � 2 (0; 1) and f 0(z) 6= 0 for some z; w = 0.

F. Additional Tables

F1. College Value: A Simulated Example
Table 7.2 College Value: A Simulated Example

All Applicants Attendeeseu1(A = 1; Z = 1) �234068:4 (115117:4) 85945:8 (30811:5) 99942:4 (34730:2)eu1(A = 2; Z = 1) �222834:1 (115493:2) 117083:6 (43664:9) 157089:1 (44945:0)eu1(A = 3; Z = 1) �57699:4 (115636:8) 134435:5 (58596:4) 159033:6 (58609:5)eu1(A = 1; Z = 2) �74090:3 (115117:4) 108956:4 (50605:7) 126051:4 (50773:6)eu1(A = 2; Z = 2) �62856:0 (115493:2) 133911:5 (57014:3) 158914:7 (58820:5)eu1(A = 3; Z = 2) 123994:5 (115637:1) 187099:1 (82266:7) 211289:7 (79100:2)

F2. Model Fit

Table 16.2 Tuition Fit in Step-3

Top Priv. Top Pub. Low Priv. Low Pub.

Data 27009 5347 17201 3912

Best Response 27579 4954 18010 3921

F3. Robustness Check: Counterfactual Experiments With Alternative !82

F3.1 Perfect Signal

82This subsection shows the results for ! = [1; 1:4; 2]0. For other !�s around [1; 2; 3], the results are similarly
robust.
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Table F3.1.1 Perfect Signals

Distribution of Portfolio Sizes

Size = 0 Size = 1 Size = 2 Size = 3 Size = 4

Base SPNE 55:9 31:8 9:2 2:9 0:2

New SPNE 57:1 34:5 7:4 1:0 0:1

Table F3.1.2 Perfect Signals

Admission Rates

% Group 1 Group 2 Group 3 Group 4

Base SPNE 44:1 82:7 99:0 98:2

New SPNE 93:8 97:7 97:5 99:2

Table F3.1.3 Perfect Signals

Ability Distribution Within Each Destination

% Group 1 Group 2 Group 3 Group 4 Outside

Base SPNE

A = 1 3:4 0:2 7:4 0:8 95:0

A = 2 6:2 15:3 81:1 92:1 2:9

A = 3 90:4 84:5 11:5 7:1 2:1

New SPNE

A = 1 0:0 0:0 1:8 0:0 96:4

A = 2 0:0 0:1 86:6 94:2 2:3

A = 3 100:0 99:9 11:5 5:8 1:3

Table F3.1.4 Perfect Signals

Tuition

Group 1 Group 2 Group 3 Group 4

Base SPNE 26940 4773 19907 4392

New SPNE 27004 3825 17251 3718

Table F3.1.5 Perfect Signals

Mean Student Welfare

Base SPNE ($) New SPNE($) Change ($) Change (%)

All 41396 43575 2179 5:3

A = 1 670 161 �509 �76:0
A = 2 98248 102550 4302 4:4

A = 3 84550 95740 11190 13:2
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F3.2 Funding Cuts

Table F3.2.1 Funding Cuts

Tuition

Group 1 Group 2 Group 3 Group 4

Base SPNE 26940 4773 19907 4392

New SPNE 27103 5394 20095 4821

Table F3.2.2 Funding Cuts

Mean Student Welfare

Base SPNE New SPNE($) Change ($)

All 41396 40639 �757
A = 1 670 647 �23
A = 2 98248 96497 �1751
A = 3 84550 82903 �1647

F3.3 Creating Opportunity

Table F3.3.1 Increasing Supply

Tuition

Group 1 Group 2 Group 3 Group 4

Base SPNE 26940 4773 19907 4392

New SPNE 27534 6890 18176 98

Table F3.3.2 Increasing Supply

Admission Rates

% Group 1 Group 2 Group 3 Group 4

Base SPNE 44:1 82:7 99:0 98:2

New SPNE 47:3 95:3 99:8 100:0

Table F3.3.3 Increasing Supply

Attendance Rate

Base SPNE New SPNE

40:9 43:0
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